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Abstract
Jaynes’ information theory formalism of statistical mechanics is applied to
the stationary states of open, non-equilibrium systems. First, it is shown
that the probability distribution p� of the underlying microscopic phase space
trajectories � over a time interval of length τ satisfies p� ∝ exp(τσ�/2kB) where
σ� is the time-averaged rate of entropy production of �. Three consequences
of this result are then derived: (1) the fluctuation theorem, which describes
the exponentially declining probability of deviations from the second law of
thermodynamics as τ → ∞; (2) the selection principle of maximum entropy
production for non-equilibrium stationary states, empirical support for which
has been found in studies of phenomena as diverse as the Earth’s climate and
crystal growth morphology; and (3) the emergence of self-organized criticality
for flux-driven systems in the slowly-driven limit. The explanation of these
results on general information theoretic grounds underlines their relevance to
a broad class of stationary, non-equilibrium systems. In turn, the accumulating
empirical evidence for these results lends support to Jaynes’ formalism as a
common predictive framework for equilibrium and non-equilibrium statistical
mechanics.

PACS numbers: 05.70.Ln, 65.40.Gr, 89.70.+c

1. Introduction

More than 100 years since the development of equilibrium statistical mechanics (ESM) by
Boltzmann and Gibbs, the general consensus appears to be that we still do not have an
equivalent formalism for predicting the behaviour of non-equilibrium systems. And yet almost
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50 years ago, following the development of information theory by Shannon [1], Jaynes [2, 3]
proposed that Gibbs’ approach could provide a common predictive framework for equilibrium
and non-equilibrium behaviour.

Gibbs’ formalism of ESM consists of maximizing the quantity −∑i pi ln pi with respect
to the microstate probabilities pi, subject to the relevant external constraints on the system—
thus yielding the microcanonical, canonical and grand-canonical distributions for isolated,
closed and open systems, respectively. In the light of Shannon’s interpretation of −∑i pi ln pi

as a measure of missing information [1], Jaynes [2, 3] saw Gibbs’ formalism of ESM as but
one example of a general form of statistical inference (‘Maxent’) which could be extended to
non-equilibrium systems, as well as to other problems requiring prediction from insufficient
data (e.g., image reconstruction, spectral analysis, inverse problems). By 1962 Jaynes had
shown how the Maxent method led to the known results of linear transport theory (Onsager,
Kubo and others) for near-equilibrium systems [4]. However, Jaynes’ approach has yet to
be generally accepted as a formalism for non-equilibrium statistical mechanics (NESM), due
perhaps to the paucity of published results by the ‘Maxent school’ [5], particularly with regard
to new testable predictions of behaviour far from equilibrium.

Now, however, from a variety of empirical and theoretical studies within the last 25
years, three generic features of non-equilibrium behaviour have emerged which offer further
opportunities to test Jaynes’ formalism of NESM. Firstly, since the 1970s, Paltridge [6–9] and
subsequent authors [10–15] have suggested that the observed mean-annual configuration of
horizontal energy fluxes in the Earth’s atmosphere and oceans corresponds closely to a state of
maximum global entropy production. A selection principle of maximum entropy production
(MaxEP) also appears to govern the observed vertical heat fluxes in the atmosphere [16, 17].
Wider empirical support for MaxEP has been found in studies of such diverse phenomenaas the
Earth’s thermohaline circulation [18], the zonal climates of Mars and Titan [19], crystal growth
morphology [20, 21] and bacterial metabolism [22]. A principle of MaxEP was also postulated
by Sawada [23]. Some qualitative arguments for MaxEP have been put forward [8, 9, 24, 25].
In addition, Ziegler’s theorem of maximum dissipation [26] may offer a phenomenological
approach to understanding MaxEP [15]. However, what is currently lacking is a statistical
mechanical framework from which MaxEP emerges as an explicit quantitative prediction.

Secondly, and more recently, an apparently independent property of entropy production,
the fluctuation theorem (FT), has been established for a variety of non-equilibrium systems
[27–32]. The FT relates the probability p(σ τ) of observing a phase-space trajectory with
a whole-system entropy production rate of σ τ over time interval τ , to that of observing a
trajectory with entropy production rate of −σ τ: specifically, p(σ τ)/p(−σ τ) = exp(τσ τ/kB).
This result describes how the probability of violations of the second law of thermodynamics
becomes exponentially small as τ or the system size increases. The FT has been demonstrated
mainly through theoretical studies and computer simulations of microscopic dynamics
[27–31]. The first experimental demonstration of the FT was given recently by Wang et al
[32]. The validity of the FT for a wide class of microscopic systems suggests that it has
some generic explanation. Maes [33] has shown that the FT can be understood on the basis
of the hypothesis that the underlying microscopic space-time trajectories have a Gibbs-type
distribution. While the Gibbs property has been demonstrated in specific cases, its justification
on general grounds remains to be established.

A third line of research has led to the emergence of the paradigm of self-organized
criticality (SOC) [34, 35]. SOC describes the observation that non-equilibrium systems as
diverse as earthquakes, sandpiles and biological evolution tend to organize themselves into
states whose dynamics vary abruptly, and which are characterized by power-law behaviour
reminiscent of equilibrium systems at their critical points. The critical behaviour of equilibrium
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systems is well understood, and can be predicted from a renormalization group analysis of
Gibbs’ grand-canonical distribution. The reason we do not have an equivalent understanding
of SOC is, essentially, that we do not yet know the non-equilibrium analogue of Gibbs’
distribution [35].

Jaynes [36], commenting in 1980 on Prigogine’s principle of minimum entropy production
[37], conjectured that perhaps Gibbs’ method might be closer in spirit to a principle of maximum
entropy production (although it is not clear whether Jaynes was aware of Paltridge’s work [6–8]
up to this time). The purpose of this paper is to show that all three behaviours (MaxEP, FT,
SOC) are explicit predictions of Jaynes’ formalism of NESM. Specifically, we consider the
macroscopic stationary states of open, non-equilibrium systems, and use Jaynes’ formalism
to construct the probability distribution p� for the underlying microscopic phase-space
paths �. Thus p� is the analogue of Gibbs’ grand-canonical distribution (to which p� reduces
in the equilibrium limit, as shown below). MaxEP, FT and SOC are derived as corollaries of
the result for p�.

The plan of the paper is as follows. Section 2 gives an overview of Jaynes’ formalism of
NESM, its underlying rationale and a summary of the main steps involved in the subsequent
derivation of MaxEP, FT and SOC. This section also introduces some notation. Section 3
describes in detail the derivation of the key result, an expression for the microscopic path
distribution p�. In section 4 the FT, the principle of MaxEP and SOC are then derived as
corollaries of this result. Some concluding remarks are made in section 5.

2. Overview of the Jaynes formalism of NESM

2.1. What is the Jaynes formalism?

The Jaynes formalism of NESM, as applied here, simply consists of maximizing the path
information entropy SI = −∑� p� ln p� with respect to p�, subject to the imposed constraints.
All macroscopic quantities may then be calculated as expectation values over the distribution
p�. The imposed constraints include external forcings such as solar radiation input at the
top of the atmosphere in the case of a planetary climate system, the input of grains in the
case of a sandpile, or the imposed temperature gradient in the case of a Rayleigh–Bénard
convection cell. The imposed constraints may also include microscopic conservation laws
which determine the spectrum of possible paths �. In the case of stationary macroscopic
states, a stationary steady-state constraint will also apply.

2.2. Underlying rationale

According to a limit theorem first noted by Shannon [1], the information entropy SI =
−∑N

i=1 pi ln pi is the logarithm of the number of outcomes i with non-negligible probability
pi (giving a generalization of Boltzmann’s relation S = kB ln W ). This is easily seen in the
extreme cases where pi is uniform (SI = ln N) and sharply peaked on a single outcome
(SI = ln 1 = 0). In the case of NESM, therefore, SI = −∑� p� ln p� is the logarithm of the
number of microscopic phase-space paths � having non-negligible probability p�. Jaynes’
procedure amounts, then, to finding the most probable macrosopic history, i.e. the one that
can be realized by the greatest number of microscopic paths (the broadest p�) compatible with
the imposed constraints. The rationale here is analogous to Boltzmann’s microstate counting,
now in terms of microscopic paths. Paths rather than states are the central objects of interest
in non-equilibrium systems, because of the presence of non-zero macroscopic fluxes whose
statistical description requires us to consider the underlying microscopic behaviour over time.
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An equivalent, more information-based way of viewing the rationale for Jaynes’ formalism
is to recognize that we are concerned with the prediction of reproducible macroscopic
behaviour [3]. Whereas the macroscopic behaviour is experimentally reproducible under the
applied constraints, the microscopic path � is not (because we cannot set up the system with
atomic precision). That the macroscopic behaviour is reproducible under given constraints
implies that it is characteristic of each of the vast number of microscopic paths compatible
with those constraints [3]. It follows that the vast majority of the microscopic details of �

are irrelevant to the prediction of macroscopic quantities. Jaynes’ procedure of maximizing the
information entropy SI, subject only to the imposed constraints, effectively discards all of the
irrelevant microscopic information from p�. It ensures that the only information encoded in p�

are the external constraints, the steady-state constraint, and any other a priori information such
as local conservation laws—we simply do not need any other information if these constraints
are sufficient to reproduce the macroscopic behaviour of the system. When applications of
the Jaynes procedure fail, the situation is informative because it signals the presence of new
constraints that had not been taken into account.

2.3. Main steps involved

First we introduce some notation. We will consider a general open system (volume V,
boundary �) exchanging both energy and matter with its surroundings. The system may
consist of several constituents (i = 1, . . . , m) undergoing mutual transformations. Let u(x, t)
denote the internal energy density and ρi(x, t) the mass density of constituent i at position x
and time t, and let f u(x, t) and f i(x, t) denote the corresponding internal energy and mass flux
densities. It is convenient to introduce the macroscopic state vectors d = (u, {ρi}) and F =
(f u, {f i}). The normal components of F on the boundary � are denoted by F n. For
any quantity X, let X = 1

τ

∫ τ

0 X(t) dt denote its time average over interval τ , and let
〈X〉 = ∑

� p�X� denote its expectation value over the probability distribution p� of the
underlying microscopic paths, where X� is the value of X for the path �.

We will use Jaynes’ formalism to find the most probable macroscopic stationary state
adopted by the system under the imposed constraints. The overall procedure, then, will be to
maximize the path information entropy

SI = −
∑

�

p� ln p� (1)

with respect to p� , subject to the external constraints (e.g., surface flux inputs, externally
imposed gradients), the stationarity constraint (steady-state energy and mass balance), and
any other a priori information (e.g., local energy and mass conservation). We will carry out
this procedure in two steps.

Step 1. We will consider a finite time interval from t = 0 to t = τ . We will first maximize SI

with respect to p� , subject to fixed initial configurations of internal energy and mass density
〈d(x, 0)〉 within volume V at time t = 0, and fixed time-averaged configurations of internal
energy and mass flux densities 〈F n(x)〉 on the boundary � over the subsequent time interval
τ . Note that if the system is in a stationary state, then 〈d(x, 0)〉 and 〈F n(x)〉 are sufficient
to describe the macroscopic state of the system and its interaction with the surroundings
throughout the interval τ . We will also include here the constraints of local energy and mass
conservation. This step introduces Lagrange multipliers λ(x) conjugate to 〈d(x, 0)〉 and
〈F n(x)〉, and leads to a path distribution p�(λ) and corresponding maximized information
entropy SI,max(λ) that are functionals of λ(x). It is at this point that we will see the entropy
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production of path � emerge as a key determinant of p�(λ). The fluctuation theorem will
follow as a direct consequence of the result for p�(λ).
Step 2. We will then maximize SI,max(λ) with respect to λ(x) subject to the remaining
constraints, e.g., external constraints and stationarity constraint. The logic here is that the
values of the unknown averages 〈d(x, 0)〉 and 〈F n(x)〉 that were artificially fixed during
step 1 are, for a macroscopically reproducible state, ultimately determined only by the
remaining constraints. In this step, therefore, we are discarding the residual irrelevant
information in p�(λ) due to having fixed 〈d(x, 0)〉 and 〈F n(x)〉. The solution for λ will
be denoted λ∗. The resulting distribution p�(λ∗) completes the Jaynes procedure. MaxEP
will be shown to be equivalent to this second step, and SOC will emerge as a special case of
MaxEP applied to flux-driven systems in the slowly-driven limit.

3. Derivation of path distribution pΓ(λ)

This section describes the derivation of p�(λ), completing step 1 above. Together with
normalization of p� , the configurations 〈d(x, 0)〉 and 〈F n(x)〉 yield the following constraints
on p�: ∑

�

p� = 1 (2)

∑
�

p�d(x, 0)� = 〈d(x, 0)〉 (x ∈ V ) (3)

∑
�

p�F n(x)� = 〈F n(x)〉 (x ∈ �). (4)

Now maximizing SI (equation (1)) with respect to p� , subject to equations (2)–(4), yields
the distribution

p� = 1

Z
exp(A�) (5)

in which Z = ∑
� exp(A�) is a normalization factor (partition function) and A� is the path

action given by

A� =
∫

V

λ(x) ·d(x, 0)� +
∫

�

η(x) · F n(x)� (6)

where the (m + 1)-component vectors λ(x) and η(x) are Lagrange multipliers determined
from equations (3) and (4) by the functional relationships

δ ln Z

δλ(x)
= 〈d(x, 0)〉 (x ∈ V ) (7)

δ ln Z

δη(x)
= 〈F n(x)〉 (x ∈ �). (8)

The multipliers λ(x) and η(x) are not independent on the boundary �, being linked there
through the constraints of local internal energy and mass balance:

∂d(x, t)�

∂t
= −∇ · F � + Q� (9)

in which Q is the source term for d. For a multi-component fluid with chemical reactions,
Q has components

(∑
mn φmn

∂vm

∂xn
,
{∑

r νir jr

})
, where φmn is the stress tensor, ∂vm

∂xn
is the
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rate-of-strain tensor (v = barycentric velocity), with νir and jr the stoichiometric coefficients
and rate of reaction r respectively. In order to introduce these constraints into equation (6),
we write

d(x, 0)� = 1

2
[d(x, 0)� + d(x, τ )�] − τ

2

∂d(x, t)�

∂t
(10)

and substitute ∂d(x,t)�
∂t

from equation (9). After an integration by parts on x, equation (6) then
becomes (omitting x for brevity)

A� = 1

2

∫
V

λ · (d�(0) + d�(τ)) − τ

2

∫
V

(F � · ∇λ + λ · Q�) +
∫

�

(
λτ

2
+ η

)
· F n

� (11)

in which d�(0) = d(x, 0)� and d�(τ) = d(x, τ )� . Because information about the fluxes
throughout the system is now also contained in the term

∫
V

F � · ∇λ, the information encoded
in the surface integral is redundant and the corresponding Lagrange multiplier 1

2λτ + η can be
set to zero. Thus

A�(λ) = 1

2

∫
V

λ · (d�(0) + d�(τ)) − τ

2

∫
V

(F � · ∇λ + λ · Q�) (12)

where we indicate the dependence of the action on λ explicitly, p� (λ) then being given by
equation (5).

Finally, a more familiar expression for A�(λ) is obtained by defining the local temperature
and chemical potentials (T and µi) through

λ = 1

kBT
(−1, {µi}) (13)

where kB is Boltzmann’s constant. Equation (12) becomes

A�(T , {µi}) = −1

2

∫
V

H�(0) + H�(τ)

kBT
+

τσ�

2kB

(14)

where H = u − ∑
i µiρi is the non-equilibrium generalization of the grand-canonical

Hamiltonian, H�(0) and H�(τ ) are the values of H at the end points of trajectory �(t = 0
and τ ), and σ� is the time-averaged rate of entropy production of � defined by

σ� =
∫

V

(
fu(�) · ∇

(
1

T

)
−
∑

i

f i(�) · ∇
(µi

T

)
+

1

T

∑
mn

φmn(�)

∂vm(�)

∂xn

− 1

T

∑
ir

µiνir jr(�)

)

(15)

in the case of a multi-component fluid. Equation (12) provides a more general definition
of the dimensionless entropy production (��) in terms of fluxes F and sources Q through
�� = −τ

∫
V

(F � · ∇λ + λ · Q�).
Equations (5) and (12) (or (14)) constitute the central result of step 1, which may be

summarized thus: for a non-equilibrium system characterized by given configurations of
〈d(x, 0)〉 in V and 〈F n(x)〉 on �, and obeying local energy and mass conservation, the
probability p�(λ) of a microscopic path � depends on the grand-canonical Hamiltonian H at
its end points and on the entropy production τσ� of the intermediate pathway.

Before examining the implications of this result in the following section, let us consider
the physical basis of the above definitions of temperature, chemical potential and entropy
production for non-equilibrium systems. We have seen how the constrained variational
problem of maximizing the path information entropy SI leads to a natural definition of T
and µi in terms of the Lagrange multipliers conjugate to the internal energy and mass densities
(〈u〉 and 〈ρi 〉). Because u and ρi are physical observables whose definitions do not depend on
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the existence of equilibrium, T and µi are likewise physically well-defined out of equilibrium.
The actual definition of T and µi through equation (13) ensures the correct correspondence
with the equilibrium limit, in which the path distribution reduces to Gibbs’ grand-canonical
distribution.

Also, the definition of the entropy production rate given by equation (15) is consistent
with the definition of the non-equilibrium entropy density s (not to be confused with the
information entropy SI) given by the increment relationship

T δs = δu −
∑

i

µiδρi. (16)

This may be verified by dividing equation (16) through by dt and invoking internal energy and
mass balance as in equation (9), to find the entropy balance equation∫

V

∂s�

∂t
= σ� −

∫
�

1

T

(
fn

u(�) −
∑

i

µif
n
i(�)

)
(17)

in which σ� is given by equation (15). The right-hand side of equation (17) may then be
interpreted as the difference between the time-averaged rates of entropy production within
volume V and entropy export across the boundary �, for trajectory � over interval τ . To
summarize, the quantities T, µi, s and σ� are physically well-defined however far the system
is from equilibrium, because they are entirely defined through u and ρi and their respective
conservation laws. In the information theoretic approach, therefore, there is no need to invoke
a local thermodynamic equilibrium hypothesis to define these quantities (cf [38]).

4. Three implications

4.1. Second law and fluctuation theorem

Under replacement of the microscopic path �by its time-reversal �R, the end-point contribution
to the path action A� is symmetric whereas the contribution from the pathway entropy
production is asymmetric

(
σ�R

= −σ�

)
. Equations (5) and (14) therefore imply that the

ratio of the probabilities of � and �R is given by

p�/p�R
= exp(τσ�/kB). (18)

For an arbitrary path distribution p� the function Y (θ) = 〈(
p�

/
p�R

)−θ 〉
satisfies

Y (θ) =
∑

�

p1−θ
� pθ

�R
=
∑

�

p1−θ
�R

pθ
� = Y (1 − θ) (19)

through exchange of dummy indices � and �R. In the particular case of equation (18) we
can use this result with θ = 1 to find 〈exp(−τσ/kB)〉 = 1 which, by Jensen’s inequality
exp(〈x〉) � 〈exp x〉, implies that

〈σ 〉 � 0 (20)

i.e. the second law of thermodynamics is satisfied on average. It also follows from equation
(18) that the probability distribution of the entropy production p(σ) = ∑

� δ(σ − σ�)p�

satisfies the fluctuation theorem

p(σ) = exp(τσ/kB)p(−σ ) (21)

which describes how the probability of violations of the second law becomes exponentially
small as τ or the system size increases. These results are a direct consequence of the Gibbs-
type form for p�(λ) (cf [33]), whose origin is explained here on general grounds as the result
of step 1 of the Jaynes procedure for maximizing the path information entropy.
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4.2. Maximum entropy production

An expression for the maximized path information entropy SI,max(λ) after step 1 is obtained
by substituting equation (5) into equation (1), giving

SI,max(λ) = −
∑

�

p�(λ) ln p�(λ) = ln Z(λ) − 〈A(λ)〉. (22)

Recall that the path action A�(λ) = Arev
� (λ) + Airr

� (λ) is the sum of a reversible part (Arev
� (λ),

the end-point contribution) which is symmetric under path reversal (� → �R), and an
irreversible part (Airr

� (λ) = τσ�/2kB , the contribution from the path entropy production)
which is asymmetric under path reversal.

Let us consider the number of paths � which contribute to the mean behaviour, and which
therefore have reversible action 〈Arev(λ)〉 and irreversible action 〈Airr(λ)〉. Note that for every
such path �, there exists another path (the reversed path �R) with the same reversible action
〈Arev(λ)〉 but an irreversible action of −〈Airr(λ)〉. Therefore the number of paths contributing
to the mean behaviour is W(〈Airr(λ)〉), the number of paths with irreversible action equal to
〈Airr(λ)〉. Ignoring fluctuations about the mean behaviour, we then have the approximation

Z(λ) =
∑

�

exp(A�(λ)) ≈ W(〈Airr(λ)〉) exp(〈A(λ)〉). (23)

Equations (22) and (23) then yield the result

SI,max(λ) ≈ ln W(〈Airr(λ)〉). (24)

Assuming that W(Airr) is an increasing function of Airr, then step 2 of the Jaynes procedure,
in which we maximize SI,max(λ) with respect to λ(x) subject to the remaining constraints
(external constraints, stationarity constraint), is equivalent to maximizing the mean entropy
production rate 〈σ(λ)〉 with respect to λ(x), subject to those same constraints. That is, within
the mean-field approximation that neglects fluctuations in the action, step 2 of the Jaynes
procedure is equivalent to the principle of MaxEP.

As equation (15) illustrates, the entropy production rate can be interpreted as a product
of fluxes and their conjugate forces. In these terms, a maximum in entropy production exists
because, under the steady-state constraints of energy and mass balance, the fluxes act to
dissipate the conjugate driving forces, leading to a trade-off between fluxes and forces. A toy
example, in the spirit of Paltridge [9], serves to illustrate this trade-off. Consider a two-box
climate system (box 1: ‘equatorial zone’ at temperature T1, box 2: ‘polar zone’ at temperature
T2), with short-wave radiation input fSW into box 1 only, long-wave radiation outputs from box
i proportional to Ti

4, and meridional heat flux h from box 1 to box 2. Steady-state energy
balance then implies T1 ∝ ( fSW − h)1/4 and T2 ∝ h1/4. As a result, the entropy production rate
σ = h(1/T2 − 1/T1) has a maximum with respect to h at hopt ≈ 0.199 fSW, between the values
h = 0 (zero flux) and h = 0.5fSW (zero driving force) at which σ vanishes. The principle of
MaxEP predicts that hopt is the actual meridional heat flux which is physically selected.

One objection to Paltridge’s work has been that his formulation of MaxEP for the Earth’s
climate only includes contributions to global entropy production from horizontal heat transport
in the atmosphere and oceans, and ignores the radiative entropy change associated with the
transfer of solar radiation from solar to terrestrial temperatures [39]. In this regard, it should
be noted that Jaynes’ procedure tells us which quantity is maximized, namely the rate of
entropy production σ� defined through equations (12) and (14), as derived from the local
internal energy and mass balance of the system (equation (9)). If we apply Jaynes’ procedure
to the matter component of Earth’s climate (effectively treating the radiation component as an
imposed constraint), then σ� is the material entropy production given by equation (15), which
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includes contributions from both horizontal and vertical heat transport, but does not involve
the radiative entropy production. The radiative entropy production is then irrelevant when
applying MaxEP to the climate system (as in Paltridge’s formulation), in agreement with the
entropy balance analyses of Goody and Abdou [40, 41]. This conclusion might be examined
more fully through an application of Jaynes’ procedure to the combined system of matter and
radiation, along the lines of [42].

For the climate systems there is an additional contribution to σ� from radiative heating
at planetary temperatures, deriving from the internal energy component of Q in equations (9)
and (12). This contribution is not taken into account in the purely material entropy production
of equation (15), and is in fact ignored in applications of MaxEP to the climate [16, 17]. Again
Jaynes’ procedure provides the rationale for ignoring this contribution—radiative heating is
reversible and does not contribute to the number of paths W(〈Airr(λ)〉) in equation (24). To
summarize, in applications of MaxEP to climate systems it is the irreversible, material entropy
production that is maximized.

4.3. Self-organized criticality

We have seen how step 2 of the Jaynes procedure gives (within a mean-field approximation)
a path distribution p�(λ) for which the corresponding mean entropy production rate is
maximized with respect to λ, subject to the external constraints on the system (and the
stationarity constraint). Denoting by λ∗ the solution for λ that satisfies the MaxEP principle,
all macroscopic quantities reproduced under the external constraints can be calculated as
expectation values over p�(λ∗). The MaxEP state (λ = λ∗) is, in other words, the reproducible
state into which the system self-organizes under the given external constraints.

Let us now consider a flux-driven system in a MaxEP state, for example, a sandpile driven
by a fixed external grain influx of magnitude Fext. Let F be the magnitude of the total outflux
of grains. The stationarity constraint implies that 〈F 〉 = Fext. For the sandpile, λ(x) would
be the chemical potential conjugate to the mean number of grains at x, and thus would be a
function of the mean local height h(x), with λ∗(x) corresponding to the mean height profile
into which the sandpile self-organizes for given Fext.

In principle, we could use p�(λ∗) to construct the output flux probability distribution
p(F), including its dependence on Fext, through

p(F |Fext) =
∑

�

δ(F − F�)p�(λ∗). (25)

Instead, let us use symmetry considerations to construct a Landau–Ginzburg approximation
for p(F) in the slow-driving limit Fext → 0. The objective here is to show in a general way
how SOC emerges from MaxEP within the mean-field approximation, rather than to describe
a specific system in detail for which a calculation based explicitly on equation (25) might be
required.

Specifically, we will suppose that

p(F |Fext) = 1

Z(Fext)
exp{H(F |Fext)} (26)

where Z(Fext) = ∫∞
0 dF exp{H(F |Fext)} and, for small F,

H(F |Fext) = rF 2 + gF 4 (27)

where the expansion in even powers reflects the fact that paths contributing to a given
magnitude F do so in pairs (�, �R) related by time reversal, each pair having weight
exp(A�(λ∗)) + exp(−A�(λ∗)); we ignore the end-point contribution in the limit τ → ∞.
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We will take r > 0 and g < 0. A steepest-descent calculation then yields 〈F 〉 = √−r/2g and
from the stationarity constraint 〈F 〉 = Fext we identify r = −2gF 2

ext. Small fluctuations in F
around 〈F 〉 are governed by the value of H ′′ = d2H/dF 2 at 〈F 〉. Specifically, the mean-field
approximation to the variance of F is given by

〈(F − 〈F 〉)2〉 ≈ 1

|H ′′| = 1

8|g|F 2
ext

(28)

which diverges as Fext → 0. Thus the characteristic signal of SOC emerges in the slow-driving
limit.

The usual weaknesses inherent in mean-field analyses of SOC [35] also apply here, so
that equation (28) is likely to be only qualitatively correct. However, the main point has
been to show how Jaynes’ formalism allows us to understand SOC as being the macroscopic
behaviour which is reproducible (i.e. most probable) under the constraint of a slow driving
flux. In principle, through calculations based directly on equation (25), Jaynes’ procedure
provides a general predictive framework for flux-driven systems, which for example could
be used to identify further criteria for the emergence of SOC (e.g., threshold dynamics, low
friction [35]).

In the case of the one-dimensional sandpile model [43] it is intuively clear that SOC
corresponds to a MaxEP state. The mean rate of entropy production is proportional to
Fext(hx=L −hx=0) which, because Fext is fixed, has a maximum when the average slope adopts
its largest possible value, i.e. the critical slope dh/dx|c. This behaviour contrasts with that
of systems driven by fixed gradients. For such systems the MaxEP state corresponds to a
maximum in the conjugate flux [23], consistent with the principles of maximum heat and
momentum transport proposed by Malkus and Busse for Bénard-type thermal convection and
turbulent shear flow, respectively.

5. Concluding remarks

Paltridge [6, 7, 9] and Grassl [10] demonstrated the practical benefits of the principle of
maximum entropy production for the prediction of climate and climate change, in avoiding the
need to represent in detail the vast number of internal processes involved. The explanation of
this principle, together with that of the fluctuation theorem and SOC, on general information
theoretic grounds serves to underline the relevance of these results to a broad class of
stationary, non-equilibrium systems. Their wider relevance may be examined within an
extension of the present formalism to reproducible non-stationary behaviour (e.g.,cyclic steady
states, approach to equilibrium), in which the Lagrange multipliers λ(x) would generalize
to λ(x, t) [4].

In turn, the accumulating empirical evidence for these results over the last 25 years
lends further support to Jaynes’ formalism as a common predictive framework for equilibrium
and non-equilibrium statistical mechanics [2–4]. In each case the problem is to predict
macroscopically reproducible behaviour, and the solution is to maximize the information
entropy subject to the imposed constraints. The two cases differ only in the nature of the
constraints that are imposed.

Finally, it is worth emphasising the general character of Jaynes’ procedure, whose
predictions may therefore apply to certain dynamical systems lying outside the immediate
scope of physics, such as economies and biological populations. If the reproducible stationary
states of a system are described by quantities d(x, t) obeying a local conservation law with
fluxes F and sources Q (equation (9)), then the Jaynes procedure leads to the general result
for p�(λ) given by equations (5) and (12), in which a generalized entropy production can be
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defined through the second term in equation (12). The corollaries of this result (FT, MaxEP,
SOC) may then be expected as generic features of such systems.
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